DR to meet DNA: The future of X-ray

DR to meet DNA: The future of X-ray

November 16, 2018
X-Ray
Kirsten Doerfert
From the November 2018 issue of HealthCare Business News magazine

By Kirsten Doerfert

For nearly a century after Wilhelm Roentgen discovered electromagnetic radiation in 1895, X-ray remained relatively unchanged.
Although the transition to digital images began with computed radiography (CR), it was the emergence of digital radiography (DR) that is expediting X-ray transformation. The future will bring continued enhancements, advanced capabilities such as AI and the ability to capture motion, addressing global healthcare issues and meeting the goals of higher quality care with greater access at a lower cost.

The digital X-ray is an essential primary diagnostic tool, widely available in developed nations. Access is increasing in underdeveloped countries, in part due to lower-cost DR equipment and the expansion of teleradiology. In the U.S., radiography accounts for 74 percent of all radiologic studies with over 36 million chest X-rays alone performed annually for diagnosis and patient management. A lot of information can be discerned from the static grayscale image. What if it were also possible to see even more? That ability is here today with even greater promise for the future to improve clinical outcomes, workflow and efficiency, and lower the cost of healthcare.

Servicing GE, Philips and Siemens CT equipment with OEM trained engineers

Numed, a well established company in business since 1975 provides a wide range of service options including time & material service, PM only contracts, full service contracts, labor only contracts & system relocation. Call 800 96 Numed for more info.

Soon we will extract more data than previously thought possible from a radiograph. A conventional digital X-ray system will capture motion, allowing the clinician to observe the relationship of anatomical structures relative to physiological changes and time. With chest X-ray in motion we can visualize diaphragmatic, heart and lung motion during successive respiratory and cardiac cycles. It’s not fluoroscopy, but rapid sequential X-rays with advanced processing obtained at a low dose.

By visualizing and quantifying these changes, clinicians can better assess functional limitations and monitor a patient’s progression. This capability has the potential to revolutionize our understanding of diseases and better manage patients based on their individual characteristics. It is not limited to chest X-rays but applicable to any anatomical area that can be imaged with radiography. There are an estimated 40 million spine and extremity X-rays each year as well. The potential benefit is enormous.

X-ray in motion is the foundation upon which we will apply advanced analytics and artificial intelligence (AI) to provide a greater level of diagnostic information. It will be possible to visualize and quantify pulmonary function including ventilation and perfusion in the lung dynamically, allowing for greater diagnostic specificity.

You Must Be Logged In To Post A Comment