dismiss

Clean Sweep Live Auction on Thur. March 28th. Click to view the full inventory

DOTmed Home MRI Oncology Ultrasound Molecular Imaging X-Ray Cardiology Health IT Business Affairs
News Home Parts & Service Operating Room CT Women's Health Proton Therapy Endoscopy HTMs Mobile Imaging
SEARCH
Current Location:
>
> This Story


Log in or Register to rate this News Story
Forward Printable StoryPrint Comment
advertisement

 

advertisement

 

More Future Of...

The future of pediatric imaging Insights from Dr. Diku Mandavia, chief medical officer for FUJIFILM Medical Systems U.S.A. Inc. and FUJIFILM SonoSite Inc.

DR to meet DNA: The future of X-ray Digital X-ray will soon capture motion and provide a vast array of new insights to diagnostic imaging

The present and future of spectral imaging Insights from Christian Eusemann, Ph.D., vice president of collaborations at Siemens Healthineers North America

What will MR look like in ten years? Insights from Michael Friebe, research professor of image-guided therapies at the Otto von Guericke University in Magdeburg Germany

The future of equipment upgrades Satrajit Misra, vice president of Marketing and Strategic Development, Canon Medical Systems Inc., on what lengthening replacement cycles mean for providers

See All Future Of...  

Artificial Intelligence Homepage

Apple study suggests wearable technology may be useful in detecting atrial fibrillation May assist in stroke and hospitalization prevention

Nvidia unveils Clara AI platform at GPU Technology Conference Equipped with 13 state-of-the-art classification and segmentation algorithms

BSWH to install Glassbeam's CLEAN blueprint to leverage machine uptime Will include integrated CMMS software by EQ2

Machine learning reduces false positives for lung cancer in low-dose CT False positives occur at rate of 96 percent

Beyond the hype: How practical AI is enhancing radiology Insights from Imad B. Nijim, chief information officer for MEDNAX Radiology Solutions

Siemens and ESR present first Digital Experience Hall at ECR Aims to stimulate exchange of thoughts and knowledge about digitization in radiology

Canon showcases CT image reconstruction tech and software upgrade at ECR Removing noise while preserving signals

GE debuts work-in-progress algorithms at ECR 2019 For predicting no-shows and detecting the presence of pneumothoraces

Personalized cardiac test could eliminate unnecessary catheterizations Examines flow of blood with AI and CT

Women's brains appear three years younger than men's at the same age: PET study A machine-learning algorithm assisted with the analysis

Steven Tolle

Making the invisible visible: The future of AI in imaging

From the January/February issue of DOTmed HealthCare Business News magazine

By Steven Tolle

In 2013, Trafton Drew, then an attention researcher at Harvard Medical School, conducted an experiment designed to test the theory of “inattentional blindness”, which occurs when people fail to see an object that is in plain sight because they were too focused on looking for something else.
He did this by superimposing a matchbook-sized picture of a man in a gorilla suit onto a series of slides radiologists typically look at when they are screening for cancer. Ultimately, 83 percent of the radiologists did not see the gorilla.

Story Continues Below Advertisement

RaySafe helps you avoid unnecessary radiation

RaySafe solutions are designed to minimize the need for user interaction, bringing unprecedented simplicity & usability to the X-ray room. We're committed to establishing a radiation safety culture wherever technicians & medical staff encounter radiation.



The experiment is a prime example of the power of humans to focus so intently on a specific task – in this case looking for lung nodules – everything else we see can be filtered and shaped by that focus. It’s also a compelling argument for the potential of artificial intelligence (AI) in imaging.

It is our premise that radiologists are very good at finding what they are looking for but not at finding what they aren’t looking for. Radiologists are incredibly proficient at spotting lung nodules. Industry-wide, the miss rate for radiologists looking for specific abnormalities is just 3-5 percent. But that doesn’t mean they are seeing everything.

The near-term potential of AI is to build a safety net that lets us identify the high-value signals that might otherwise not have been the focus. Longer-term, the technology has the potential to revolutionize precision medicine and improve patient care. Make no mistake, a lot still needs to happen before that long-term promise is fulfilled. But many of the critical building blocks are already in place today.

For example, right now, today, we are able to use natural language processing technology to read clinical text from electronic health records (EHRs) and progress notes to identify, categorize, and code unstructured data and turn it into actionable, quantifiable insights on a patient chart. That data is allowing us to highlight potential discrepancies in documentation and provide valuable clinical context to physicians during image interpretation.

This is a critical first step. Researchers from the Medical College of Wisconsin recently found that when radiologists had the time and access to patient charts, they would change their findings between 20 and 25 percent of the time. There is data locked in the patient’s chart that can be critical to a diagnosis.

The next step – which is being tested with radiologists around the world today – is leveraging those text analytics to inform care decisions. Initially, our work here was focused on specific organs, but it is evolving quickly to address specific conditions within entire body systems. What that means is that our technology will soon be able to screen chest X-rays and chest CT scans to help clinicians identify conditions such as emphysema and COPD, aneurysm, pulmonary embolism, pneumonia and others.

We are entering a new world of precision medicine and imaging will play a large role in the evolution. As these technologies and science evolve, they will enable image-based biomarkers that, coupled with liquid biopsies, can be used to identify signals that are consistent with disease.

While it’s tempting to focus on that long-term potential, the most exciting developments around AI in imaging are actually those that are taking shape today. By carefully nurturing this technology, partnering with healthcare providers around the world to train and test it, and aiming for consistent improvements in workflow processes, we are putting the pieces in place that will enable a real, sustainable revolution in healthcare.

About the author: Steven Tolle is vice president, global strategy and business development, IBM Watson Health.

Artificial Intelligence Homepage


You Must Be Logged In To Post A Comment

Advertise
Increase Your
Brand Awareness
Auctions + Private Sales
Get The
Best Price
Buy Equipment/Parts
Find The
Lowest Price
Daily News
Read The
Latest News
Directory
Browse All
DOTmed Users
Ethics on DOTmed
View Our
Ethics Program
Gold Parts Vendor Program
Receive PH
Requests
Gold Service Dealer Program
Receive RFP/PS
Requests
Healthcare Providers
See all
HCP Tools
Jobs/Training
Find/Fill
A Job
Parts Hunter +EasyPay
Get Parts
Quotes
Recently Certified
View Recently
Certified Users
Recently Rated
View Recently
Certified Users
Rental Central
Rent Equipment
For Less
Sell Equipment/Parts
Get The
Most Money
Service Technicians Forum
Find Help
And Advice
Simple RFP
Get Equipment
Quotes
Virtual Trade Show
Find Service
For Equipment
Access and use of this site is subject to the terms and conditions of our LEGAL NOTICE & PRIVACY NOTICE
Property of and Proprietary to DOTmed.com, Inc. Copyright ©2001-2019 DOTmed.com, Inc.
ALL RIGHTS RESERVED