DOTmed Home MRI Oncology Ultrasound Molecular Imaging X-Ray Cardiology Health IT Business Affairs
News Home Parts & Service Operating Room CT Women's Health Proton Therapy Endoscopy HTMs Pediatrics
SEARCH
Current Location:
>
> This Story


Log in or Register to rate this News Story
Forward Printable StoryPrint Comment
advertisement

 

advertisement

 

Alzheimers/Neurology Homepage

Startup raises over $6 million for early Alzheimer's detection AI With digital biomarkers, Altoida detects risk long before symptoms appear

Study shows 30 percent drop in unnecessary head CTs with BrainScope One May help ensure appropriate use of imaging

Mild combat-related brain trauma can be detected with magnetoencephalography (MEG) Superior to conventional neuroimaging techniques like MR, CT

New study shows value of 7T MR for evaluating MS progression Can detect cortical lesions better than conventional scanners

PET uncovers abnormal tau deposits associated with CTE in live subjects May enable diagnosis of CTE in living people one day

Amyloid PET scans help with Alzheimer's clinical management New insights from the 11,000 patient IDEAS study

Women's brains appear three years younger than men's at the same age: PET study A machine-learning algorithm assisted with the analysis

APRINOIA and Celgene partner on promising PET tracer APN-1607 holds potential for visualizing tau pathology in diverse tauopathies

Opening blood brain barrier, focused ultrasound is closing therapy gap Insights from the 6th International Symposium on Focused Ultrasound

Stryker inks two partnerships for enhanced surgical guidance Offering whole-brain tractography and detail-rich imaging

A new AI tool can detect and classify
amyloid plaques in the brains
of Alzheimer's patients
(Credit: Keiser / Dugger labs).

AI tool matches radiologist in amyloid detection for Alzheimer's

by John R. Fischer , Staff Reporter
Detecting one of the hallmarks of Alzheimer’s disease may soon be a task for the computer.

Researchers at the University of California, Davis and University of California, San Francisco have developed a machine learning approach for teaching computers to precisely detect amyloid plaques in a way that offers neuropathologists access to thousands of times more data, and new questions that enhance their expertise and analyses of patients with the disease.

Story Continues Below Advertisement

THE (LEADER) IN MEDICAL IMAGING TECHNOLOGY SINCE 1982. SALES-SERVICE-REPAIR

Special-Pricing Available on Medical Displays, Patient Monitors, Recorders, Printers, Media, Ultrasound Machines, and Cameras.This includes Top Brands such as SONY, BARCO, NDS, NEC, LG, EDAN, EIZO, ELO, FSN, PANASONIC, MITSUBISHI, OLYMPUS, & WIDE.



"We still need the pathologist," lead author Brittany Dugger, an assistant professor in the UC Davis department of Pathology and Laboratory Medicine, said in a statement. "This is a tool, like a keyboard is for writing. As keyboards have aided in writing workflows, digital pathology paired with machine learning can aid with neuropathology workflows."

To teach a computer to identify, analyze and differentiate between various types of tiny amyloid plaques in large slices of autopsied human brain tissue, Dugger teamed up with Michael Keiser, an assistant professor in UCSF’s Institute for Neurodegenerative Disease and department of pharmaceutical chemistry, whose team designed the convolutional neural network (CNN) algorithm.

It also created a web platform called “blob or not” that enabled Dugger to look one-at-a-time at highly zoomed-in regions of potential plaques and quickly label what she observed. With this tool, she was able to annotate or label 70,000 blobs or plaque candidates, at a rate of 2,000 images per hour, from a collection of half a million close-up images of tissue from 43 healthy and diseased brain samples.

The UCSF researchers then used this database to train the algorithm, based on how Dugger analyzes brain tissue, enabling it to identify in the same way she does different types of brain changes seen in patients with Alzheimer’s disease, including differentiating between so-called cored and diffuse plaques, and detecting abnormalities in blood vessels.

The algorithm, when tested, proved to be successful in processing an entire whole-brain slice slide with 98.7 percent accuracy at a speed only limited by the number of computer processors used. The study used a single graphics card similar to those used by computer gamers.

Additional testing of its identification skills to ensure analyses were biologically valid also took place, with Keiser saying the solution was “no better” than Dugger at identifying plaques. He notes, however, that its use is “tireless” and “scalable”.

"It's a co-pilot, a force multiplier that extends the scope of what we can accomplish and lets us ask questions we never would have attempted manually,” he said in a statement. “For example, we can look for rare plaques in unexpected places that could give us important clues about the course of the disease.”

Dugger and Keiser hope that use of algorithms such as their own will become standard in neuropathology for analyzing large amounts of data and identifying patterns that provide new insights into causes and potential treatments for Alzheimer’s disease.

The tool, along with the study data behind it, is currently available online, and is already being used by researchers in their own labs.

The findings were published in the journal, Nature Communications.

UC Davis did not respond for comment.

Alzheimers/Neurology Homepage


You Must Be Logged In To Post A Comment

Advertise
Increase Your
Brand Awareness
Auctions + Private Sales
Get The
Best Price
Buy Equipment/Parts
Find The
Lowest Price
Daily News
Read The
Latest News
Directory
Browse All
DOTmed Users
Ethics on DOTmed
View Our
Ethics Program
Gold Parts Vendor Program
Receive PH
Requests
Gold Service Dealer Program
Receive RFP/PS
Requests
Healthcare Providers
See all
HCP Tools
Jobs/Training
Find/Fill
A Job
Parts Hunter +EasyPay
Get Parts
Quotes
Recently Certified
View Recently
Certified Users
Recently Rated
View Recently
Certified Users
Rental Central
Rent Equipment
For Less
Sell Equipment/Parts
Get The
Most Money
Service Technicians Forum
Find Help
And Advice
Simple RFP
Get Equipment
Quotes
Virtual Trade Show
Find Service
For Equipment
Access and use of this site is subject to the terms and conditions of our LEGAL NOTICE & PRIVACY NOTICE
Property of and Proprietary to DOTmed.com, Inc. Copyright ©2001-2019 DOTmed.com, Inc.
ALL RIGHTS RESERVED