Over 1650 Total Lots Up For Auction at Five Locations - NJ Cleansweep 05/07, NJ Cleansweep 05/08, CA 05/09, CO 05/12, PA 05/15

NIH Funds Fourteen High-End Instrumentation Grants

by Barbara Kram, Editor | August 15, 2006
The National Center for Research Resources (NCRR), a part of the National Institutes of Health (NIH), announced today it will provide $21.5 million for 14 High-End Instrumentation (HEI) grants that will fund cutting-edge equipment required to advance biomedical research and increase knowledge of the underlying causes of human disease. Awarded to research institutions around the country, the one-time grants support the purchase of sophisticated instruments costing more than $750,000.

"The High-End Instrumentation program provides numerous investigators access to essential equipment, often benefiting entire research communities and dramatically advancing their research projects," said Barbara M. Alving, M.D., Acting Director of NCRR. "These awards spur the kind of scientific discoveries necessary for the development of treatments for a broad spectrum of diseases."

Three or more NIH-funded investigators whose research requires the instrument must be identified in advance by the institution. Matching funds are not required for HEI grants, which provide a maximum of $2 million. However, institutions are expected to provide an appropriate level of support for associated infrastructure, such as building alterations or renovations, technical personnel, and post-award service contracts for instrument maintenance and operation.
stats
DOTmed text ad

We repair MRI Coils, RF amplifiers, Gradient Amplifiers and Injectors.

MIT labs, experts in Multi-Vendor component level repair of: MRI Coils, RF amplifiers, Gradient Amplifiers Contrast Media Injectors. System repairs, sub-assembly repairs, component level repairs, refurbish/calibrate. info@mitlabsusa.com/+1 (305) 470-8013

stats


High-end instruments supported in this round of funding include two supercomputers that rapidly process vast quantities of data, including one at the University of Washington that will enable protein chemistry studies related to lung and liver diseases. In addition, two awards will fund the purchase of nuclear mass resonance (NMR) spectrometers, designed to determine three-dimensional structures of large proteins and protein complexes. For example, the University of California will use its NMR spectrometer to study protein interactions with bacteria such as E. coli and salmonella. Meanwhile, grants will support several other types of mass spectrometers, designed to provide very high resolution and accurate molecular weight measurement for the study of large biopolymers and their interactions. These include a quadrupole/trap-Fourier transform ion cyclotron resonance mass spectrometer (Q-FTMS) at the University of Maryland, Baltimore County, that will permit the characterization of nucleic acids to advance the understanding of infectious diseases and cancer; and a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer that will enable respiratory, neurodegenerative, and cancer studies at the University of California, Los Angeles.