Over 1600 Total Lots Up For Auction at Four Locations - NJ Cleansweep 05/07, NJ Cleansweep 05/08, CA 05/09, CO 05/12

University of Rochester Advances New Imaging Technology

by Barbara Kram, Editor | April 02, 2007
The University of Rochester Medical Center (URMC) and T.I.E.S., LLC, a Rochester-based start-up company, have entered into a research partnership to evaluate a new technology that could ultimately represent a major advance in medical imaging.

T.I.E.S. -- which stands for Tomographic Image Enhancement Systems -- has patented a new image processing technology called "Image Surgery" that allows scientists and radiologists to selectively focus on a specific organ or region of the body and, as a result, create clearer and more precise side by side images. The company, which is led by two former Kodak imaging systems executives, will work with researchers in the URMC Department of Imaging Sciences to apply this technology to images from actual patients.

"We are delighted to be working with the University of Rochester Medical Center to develop this novel approach to radiological imaging," said M. Akram Sandhu, Ph.D., CEO of T.I.E.S. "The University has a great deal of research strength and expertise in this field and we are looking forward to a very productive research partnership."
stats Advertisement
DOTmed text ad

Training and education based on your needs

Stay up to date with the latest training to fix, troubleshoot, and maintain your critical care devices. GE HealthCare offers multiple training formats to empower teams and expand knowledge, saving you time and money

stats
The T.I.E.S.'s imaging technology potentially overcomes what have been significant limitations in medical tomography or three-dimensional imaging. Today's advanced imaging technologies such as gamma cameras, CT, MRI and PET scanners reconstruct images by converting a sequence of two-dimensional images which are captured by a receptor as it rotates around the patient into a three dimensional image. While these technologies have provided doctors an invaluable view into the human body, the images often contain flaws.

Radiologist Vaseem Chengazi, M.D., Ph.D., an associate professor at the University of Rochester and chief technology officer of T.I.E.S. notes that scanners work very well on images that are not moving. "However, the problem in human world is that the body is dynamic and not stationary," said Chengazi. "The body moves and breathes, the heart beats, the bladder accumulates urine, and so on. Consequently, images of these areas of the body are often marked by artifacts or distortions."

Additionally, the clarity of a specific image often depends upon the composition of objects that are nearby. Natural objects, such as organs and bones, and man made objects, such as artificial hips or surgical clips, can interfere with the images of adjacent organs or tissue because they are in the way or, in the case of artificial objects such prosthetics, are far more dense than the surrounding tissue and can throw off a scanner's sensitive instrumentation. These distortions can ultimately make it more difficult to spot smaller objects, such as tumors.